3.95 \(\int (a+a \sec (c+d x))^2 (A+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=96 \[ \frac{a^2 (A+C) \tan (c+d x)}{d}+\frac{a^2 (2 A+C) \tanh ^{-1}(\sin (c+d x))}{d}+a^2 A x+\frac{C \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{3 d}+\frac{C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d} \]

[Out]

a^2*A*x + (a^2*(2*A + C)*ArcTanh[Sin[c + d*x]])/d + (a^2*(A + C)*Tan[c + d*x])/d + (C*(a + a*Sec[c + d*x])^2*T
an[c + d*x])/(3*d) + (C*(a^2 + a^2*Sec[c + d*x])*Tan[c + d*x])/(3*d)

________________________________________________________________________________________

Rubi [A]  time = 0.140093, antiderivative size = 96, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {4055, 3917, 3914, 3767, 8, 3770} \[ \frac{a^2 (A+C) \tan (c+d x)}{d}+\frac{a^2 (2 A+C) \tanh ^{-1}(\sin (c+d x))}{d}+a^2 A x+\frac{C \tan (c+d x) \left (a^2 \sec (c+d x)+a^2\right )}{3 d}+\frac{C \tan (c+d x) (a \sec (c+d x)+a)^2}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]

[Out]

a^2*A*x + (a^2*(2*A + C)*ArcTanh[Sin[c + d*x]])/d + (a^2*(A + C)*Tan[c + d*x])/d + (C*(a + a*Sec[c + d*x])^2*T
an[c + d*x])/(3*d) + (C*(a^2 + a^2*Sec[c + d*x])*Tan[c + d*x])/(3*d)

Rule 4055

Int[((A_.) + csc[(e_.) + (f_.)*(x_)]^2*(C_.))*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> -Simp
[(C*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[1/(b*(m + 1)), Int[(a + b*Csc[e + f*x])^m*Simp
[A*b*(m + 1) + a*C*m*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, C, m}, x] && EqQ[a^2 - b^2, 0] &&  !LtQ
[m, -2^(-1)]

Rule 3917

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> -Simp[(b*
d*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m - 1))/(f*m), x] + Dist[1/m, Int[(a + b*Csc[e + f*x])^(m - 1)*Simp[a*c*m
 + (b*c*m + a*d*(2*m - 1))*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && Gt
Q[m, 1] && EqQ[a^2 - b^2, 0] && IntegerQ[2*m]

Rule 3914

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))*(csc[(e_.) + (f_.)*(x_)]*(d_.) + (c_)), x_Symbol] :> Simp[a*c*x, x]
 + (Dist[b*d, Int[Csc[e + f*x]^2, x], x] + Dist[b*c + a*d, Int[Csc[e + f*x], x], x]) /; FreeQ[{a, b, c, d, e,
f}, x] && NeQ[b*c - a*d, 0] && NeQ[b*c + a*d, 0]

Rule 3767

Int[csc[(c_.) + (d_.)*(x_)]^(n_), x_Symbol] :> -Dist[d^(-1), Subst[Int[ExpandIntegrand[(1 + x^2)^(n/2 - 1), x]
, x], x, Cot[c + d*x]], x] /; FreeQ[{c, d}, x] && IGtQ[n/2, 0]

Rule 8

Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]

Rule 3770

Int[csc[(c_.) + (d_.)*(x_)], x_Symbol] :> -Simp[ArcTanh[Cos[c + d*x]]/d, x] /; FreeQ[{c, d}, x]

Rubi steps

\begin{align*} \int (a+a \sec (c+d x))^2 \left (A+C \sec ^2(c+d x)\right ) \, dx &=\frac{C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac{\int (a+a \sec (c+d x))^2 (3 a A+2 a C \sec (c+d x)) \, dx}{3 a}\\ &=\frac{C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac{C \left (a^2+a^2 \sec (c+d x)\right ) \tan (c+d x)}{3 d}+\frac{\int (a+a \sec (c+d x)) \left (6 a^2 A+6 a^2 (A+C) \sec (c+d x)\right ) \, dx}{6 a}\\ &=a^2 A x+\frac{C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac{C \left (a^2+a^2 \sec (c+d x)\right ) \tan (c+d x)}{3 d}+\left (a^2 (A+C)\right ) \int \sec ^2(c+d x) \, dx+\left (a^2 (2 A+C)\right ) \int \sec (c+d x) \, dx\\ &=a^2 A x+\frac{a^2 (2 A+C) \tanh ^{-1}(\sin (c+d x))}{d}+\frac{C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac{C \left (a^2+a^2 \sec (c+d x)\right ) \tan (c+d x)}{3 d}-\frac{\left (a^2 (A+C)\right ) \operatorname{Subst}(\int 1 \, dx,x,-\tan (c+d x))}{d}\\ &=a^2 A x+\frac{a^2 (2 A+C) \tanh ^{-1}(\sin (c+d x))}{d}+\frac{a^2 (A+C) \tan (c+d x)}{d}+\frac{C (a+a \sec (c+d x))^2 \tan (c+d x)}{3 d}+\frac{C \left (a^2+a^2 \sec (c+d x)\right ) \tan (c+d x)}{3 d}\\ \end{align*}

Mathematica [B]  time = 6.51247, size = 1090, normalized size = 11.35 \[ \text{result too large to display} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2),x]

[Out]

(A*x*Cos[c + d*x]^4*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2))/(2*(A + 2*C + A*Cos[2*
c + 2*d*x])) + ((-2*A - C)*Cos[c + d*x]^4*Log[Cos[c/2 + (d*x)/2] - Sin[c/2 + (d*x)/2]]*Sec[c/2 + (d*x)/2]^4*(a
 + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2))/(2*d*(A + 2*C + A*Cos[2*c + 2*d*x])) + ((2*A + C)*Cos[c + d*x]^4*
Log[Cos[c/2 + (d*x)/2] + Sin[c/2 + (d*x)/2]]*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2
))/(2*d*(A + 2*C + A*Cos[2*c + 2*d*x])) + (C*Cos[c + d*x]^4*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C
*Sec[c + d*x]^2)*Sin[(d*x)/2])/(12*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2]
- Sin[c/2 + (d*x)/2])^3) + (Cos[c + d*x]^4*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*
(7*C*Cos[c/2] - 5*C*Sin[c/2]))/(24*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d*x)/2]
- Sin[c/2 + (d*x)/2])^2) + (Cos[c + d*x]^4*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*
(3*A*Sin[(d*x)/2] + 5*C*Sin[(d*x)/2]))/(6*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] - Sin[c/2])*(Cos[c/2 + (d
*x)/2] - Sin[c/2 + (d*x)/2])) + (C*Cos[c + d*x]^4*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d
*x]^2)*Sin[(d*x)/2])/(12*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2
+ (d*x)/2])^3) + (Cos[c + d*x]^4*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*(-7*C*Cos[
c/2] - 5*C*Sin[c/2]))/(24*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] + Sin[c/2
 + (d*x)/2])^2) + (Cos[c + d*x]^4*Sec[c/2 + (d*x)/2]^4*(a + a*Sec[c + d*x])^2*(A + C*Sec[c + d*x]^2)*(3*A*Sin[
(d*x)/2] + 5*C*Sin[(d*x)/2]))/(6*d*(A + 2*C + A*Cos[2*c + 2*d*x])*(Cos[c/2] + Sin[c/2])*(Cos[c/2 + (d*x)/2] +
Sin[c/2 + (d*x)/2]))

________________________________________________________________________________________

Maple [A]  time = 0.051, size = 134, normalized size = 1.4 \begin{align*}{a}^{2}Ax+{\frac{A{a}^{2}c}{d}}+{\frac{5\,{a}^{2}C\tan \left ( dx+c \right ) }{3\,d}}+2\,{\frac{{a}^{2}A\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+{\frac{{a}^{2}C\sec \left ( dx+c \right ) \tan \left ( dx+c \right ) }{d}}+{\frac{{a}^{2}C\ln \left ( \sec \left ( dx+c \right ) +\tan \left ( dx+c \right ) \right ) }{d}}+{\frac{{a}^{2}A\tan \left ( dx+c \right ) }{d}}+{\frac{{a}^{2}C\tan \left ( dx+c \right ) \left ( \sec \left ( dx+c \right ) \right ) ^{2}}{3\,d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x)

[Out]

a^2*A*x+1/d*A*a^2*c+5/3/d*a^2*C*tan(d*x+c)+2/d*a^2*A*ln(sec(d*x+c)+tan(d*x+c))+1/d*a^2*C*sec(d*x+c)*tan(d*x+c)
+1/d*a^2*C*ln(sec(d*x+c)+tan(d*x+c))+1/d*a^2*A*tan(d*x+c)+1/3/d*a^2*C*tan(d*x+c)*sec(d*x+c)^2

________________________________________________________________________________________

Maxima [A]  time = 0.931493, size = 177, normalized size = 1.84 \begin{align*} \frac{6 \,{\left (d x + c\right )} A a^{2} + 2 \,{\left (\tan \left (d x + c\right )^{3} + 3 \, \tan \left (d x + c\right )\right )} C a^{2} - 3 \, C a^{2}{\left (\frac{2 \, \sin \left (d x + c\right )}{\sin \left (d x + c\right )^{2} - 1} - \log \left (\sin \left (d x + c\right ) + 1\right ) + \log \left (\sin \left (d x + c\right ) - 1\right )\right )} + 12 \, A a^{2} \log \left (\sec \left (d x + c\right ) + \tan \left (d x + c\right )\right ) + 6 \, A a^{2} \tan \left (d x + c\right ) + 6 \, C a^{2} \tan \left (d x + c\right )}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="maxima")

[Out]

1/6*(6*(d*x + c)*A*a^2 + 2*(tan(d*x + c)^3 + 3*tan(d*x + c))*C*a^2 - 3*C*a^2*(2*sin(d*x + c)/(sin(d*x + c)^2 -
 1) - log(sin(d*x + c) + 1) + log(sin(d*x + c) - 1)) + 12*A*a^2*log(sec(d*x + c) + tan(d*x + c)) + 6*A*a^2*tan
(d*x + c) + 6*C*a^2*tan(d*x + c))/d

________________________________________________________________________________________

Fricas [A]  time = 0.517296, size = 331, normalized size = 3.45 \begin{align*} \frac{6 \, A a^{2} d x \cos \left (d x + c\right )^{3} + 3 \,{\left (2 \, A + C\right )} a^{2} \cos \left (d x + c\right )^{3} \log \left (\sin \left (d x + c\right ) + 1\right ) - 3 \,{\left (2 \, A + C\right )} a^{2} \cos \left (d x + c\right )^{3} \log \left (-\sin \left (d x + c\right ) + 1\right ) + 2 \,{\left ({\left (3 \, A + 5 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 3 \, C a^{2} \cos \left (d x + c\right ) + C a^{2}\right )} \sin \left (d x + c\right )}{6 \, d \cos \left (d x + c\right )^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="fricas")

[Out]

1/6*(6*A*a^2*d*x*cos(d*x + c)^3 + 3*(2*A + C)*a^2*cos(d*x + c)^3*log(sin(d*x + c) + 1) - 3*(2*A + C)*a^2*cos(d
*x + c)^3*log(-sin(d*x + c) + 1) + 2*((3*A + 5*C)*a^2*cos(d*x + c)^2 + 3*C*a^2*cos(d*x + c) + C*a^2)*sin(d*x +
 c))/(d*cos(d*x + c)^3)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a^{2} \left (\int A\, dx + \int 2 A \sec{\left (c + d x \right )}\, dx + \int A \sec ^{2}{\left (c + d x \right )}\, dx + \int C \sec ^{2}{\left (c + d x \right )}\, dx + \int 2 C \sec ^{3}{\left (c + d x \right )}\, dx + \int C \sec ^{4}{\left (c + d x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))**2*(A+C*sec(d*x+c)**2),x)

[Out]

a**2*(Integral(A, x) + Integral(2*A*sec(c + d*x), x) + Integral(A*sec(c + d*x)**2, x) + Integral(C*sec(c + d*x
)**2, x) + Integral(2*C*sec(c + d*x)**3, x) + Integral(C*sec(c + d*x)**4, x))

________________________________________________________________________________________

Giac [B]  time = 1.20263, size = 252, normalized size = 2.62 \begin{align*} \frac{3 \,{\left (d x + c\right )} A a^{2} + 3 \,{\left (2 \, A a^{2} + C a^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1 \right |}\right ) - 3 \,{\left (2 \, A a^{2} + C a^{2}\right )} \log \left ({\left | \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) - 1 \right |}\right ) - \frac{2 \,{\left (3 \, A a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} + 3 \, C a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{5} - 6 \, A a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} - 8 \, C a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{3} + 3 \, A a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 9 \, C a^{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )\right )}}{{\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}^{3}}}{3 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))^2*(A+C*sec(d*x+c)^2),x, algorithm="giac")

[Out]

1/3*(3*(d*x + c)*A*a^2 + 3*(2*A*a^2 + C*a^2)*log(abs(tan(1/2*d*x + 1/2*c) + 1)) - 3*(2*A*a^2 + C*a^2)*log(abs(
tan(1/2*d*x + 1/2*c) - 1)) - 2*(3*A*a^2*tan(1/2*d*x + 1/2*c)^5 + 3*C*a^2*tan(1/2*d*x + 1/2*c)^5 - 6*A*a^2*tan(
1/2*d*x + 1/2*c)^3 - 8*C*a^2*tan(1/2*d*x + 1/2*c)^3 + 3*A*a^2*tan(1/2*d*x + 1/2*c) + 9*C*a^2*tan(1/2*d*x + 1/2
*c))/(tan(1/2*d*x + 1/2*c)^2 - 1)^3)/d